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The classical cross section uAE, for producing a specified energy 

transfer AE in the collision of two particles 1,2 having arbitrary masses 

and velocities xrl,x2 in the laboratory system, is derived. The effective 

average (for fixed speeds v1,v2) of aAE over all directions of the particle 

velocities v 

the classical calculations of atomic collision cross sections via the 

procedures recently proposed by Gryzinski. The method will yield the 

average of any F(v,V, cos 8 )  over all directions of the particle velocities, 

where x = J, - ,.y2; rEM V is the velocity of the center of mass; and 8 is the 

and/ora2 then is computed. These results are required in *l 
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I Introductfon 

Recently Gryzinski has published three long detailing 

his procedures for performing classical (non-quantum) calculations of 

atomic collision cross sections. The utility of these procedures in 

electron-atom and electron-mokecule collisions has been examined by 

Bauer and 3artky. 4 For such collisions one requ%res the cross section 

(v v ) fop producing an energy transfer BE fn the collision of two 'BE r*-i~u2 
electrons moving with arbitrary velocities$r*;.v2 in the laboratory 
system. There also is required u:Eif(vl,v2) the effective average of 

v ) over all orientations ofzl and/orz2 for fixed speeds 

Gpyzinski hat derived expressions for these quantities, but use 
a ~ ~ h *  -2 

v v 

of these formulas is complicated by an extremely awkward notation; more- 
1' 2" 

over Gryzinski's expressions involve som sabsidiary Lpproximations. For 

these reasons, Stabler has rederived--and obtained in much simpler form-- 5 

the exact expressions for &vbEzeff and uhE in electron-electron collisions. 

Similar expressions have been obtained by Ochkur and Petrun'kin. However, 6 

these authors 5 9 6  have rederived uAE only for electron-electron collisions, 

f o e , ,  for colliding particles of equal mass, whereas for calculations of, 

e , g o ,  ion-atom collisions by Gryzinski's procedures one requires uAB and 

oeff for collisions of unequally massive charged particles bE 

in and 'AE This paper derives the required exact formulas for eAE 

the unequai mass case. Appiication of these iom-uiae to eneiiiin~titii of 

the utility of Gryzinski's procedures in charge transfer reactions is under 

way (in cooperation with Hsiang Tai and Jean Welker) e This paper obtains 
eff the final formula for uAE (v,,v,) in only one case, namely Coulwb collisions; 

it will be clear, however, that the method of performing the average over 

all orientations in applicable to arbitrary interactions, as well as to the 

averages of quantities other than uAE(v1,z2) 
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11. Calculatfon of eAE 

I consider a collision between particles 1 and 2, whose initial 

velocities in the laboratory system a r e j  = vkjbl and v = v& respectively, 

Their laboratory velocities af+ter the collision will be V I  = v&i and 
1 w 2  

,*l 

,,y; = v,&. Correspondingly, the velocities of these particles measured by 
- -  - - -  

ern observer moving with the center of' mass are,& = vd1,  x2 = v& ( initial ) 
- -  

md GI  = ?si, & = V I ~ '  (final), It is presumed that the coordinate exes w l  2& 
of' the laboratory and center of mass observers are parallel, so that the 

components of the vectors defined above are consistent with 

where V is the center of mass velocity measured by the lsborstory observer. 
hn 

M = m1 9 m2 

where 



I I' L Page 3 

are the re la t ive  veloci t ies  before and after the  col l is ion.  

For givelaJ,JtlKg2 the  vectors,J,$are determined, so t h a t  for given 

v the  polar axis of a fixed system of spherical coordinates can be &3w2 
chosen alongJ; in t h i s  system the polar and azimuth angles o f z  and 

0,o and 8 '  ,a' respectively. 

are  w _ -  
Now euppose 1 is  regarded as the "incident" 

I 

par t ic le .  men the energy gaia 

system) is 7 
AE by par t fc le  2 (as seen i s  the  laboratory 

t 
E 

-1 where p = y m 2 M  is the  reduced mass. Eq. ( 5 )  shows tha t  fo r  given 

,v the  quantity AE is a function only of I n  fac t  J 1 w 2  

d(AE) = UBV sin 8'  dg' (6) 

L e t  v ) be the t o t a l  cross section fo r  gfven,vly2. Then the  I t 2  
quarrtity uAEk1,j2) is defined by 

But if z(v ;  

s sa t t e r i ag  in t he  center of mass system (wherein the col l is ion can change 

smly the direetiom but not the magnitude of the re la t ive  veloci ty) ,  it also 

is t rue  t h a t  

+ i t )  is t h e  corresponding differential. cross section fo r  
bA w. 
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using (6) .  

Eqs. ( ? I  .and ( 8 c )  imply 

FOP fixed v ,v 

of 8 )  and therefore,  by ( 6 ) ,  of AEe 

Eq, (99 runs over dl values of $'from 0 t o  2s, because (for  any i n i t i a l  

f o e o ,  fo r  fixed g,?, t he  r fght  side of ( 9 )  is a iuactioa wl u2' 
Far every value of 8' the  in tegra l  i n  

B,?) the  f i n d  re la t ive  velocity v' cam have any direction fa space. 

moss section z(v; 

The w- 
* i' ), though depemdeat only on the  asgle between 

W W  

ard $ , can be a M c t i o m  of a t  e 

ttr 

The resu l t s  so far hold fo r  slay E .  For definfteaess,  I now special ize  

t o  t h e  Coulomb case, 

where the  center of mass system scatterimg angle x is  t h e  angle betweea 
- 
n and i t ;  ard 2 e ,  Z2e are  the charges carried by par t ic les  1,2. Substituting 
M ?4 1 
Eq. (10) in Eq. ( 9 ) ,  and employing 

2 

5 
li 

one finds 

where 
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a = 1 0 cos B cos 8 1  

b = sin 8 sin 8' 

When8 a2 3 b2, as is t he  case fo r  a,b of (13) 

Pt 

t 

w i t h  t he  restriction, also from (51, t ha t  

which guarantees uhE3  0. For given -r1,z2, if (16b) is not satisfied, then 

f e e . ,  values of BE for whfeh (16b) fa i ls  cannot occur. 

Eqs. (16) are the  desired result f o r  uAE, fa what proves t o  be a 

convenient form fo r  calculating <uAE>" In terms of v v the  quantit ies 

v, V ,  cos 8 are, using Eqse (2 )  and (41, 
w l b 2 '  

v =  ( v : + v 2 - 2 v v n  2 )1/2 
P %lo& 
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It can be shown that i n  the special case "1 = m2 = m ,  Eqs. (16) reduce 

t o  the seemingly very+af'fereat  expression for us given by Stabler, 

namely h i s  Eq. (8l0 

5 

9 



efi 111, Calculation of abE 

Suppose the target particle 2 has an fsotropfc velocity distribution 

in the laboratory system. W e n  for any actualgl the effective uAE is defined 

bY 

, 

This definition of the effective uAE is appropriate when, eogo, the particles 

2 are bound electrons in stationary atoms being ionized by a beam of protons 

(particles 1). If the atoms have velocity v # 0 in the laboratory system, 

e.g., if the atoms form a beam, the velocity distribution of 2, though iso- 

tmpfc in a coordinate system moving with the atoms, is not isotropic in the 

laboratory system. 

(e,g., the total rate of ionization) is independent of the observer's velocity, 

the simplest procedure is to compute the total reaction rate in the system 

where the velocity of 1 now fsWv1 + J ~ .  

f*ra 

In this event, realizing that the total reaction rate 

Once, as in (18), the distribution of & is accepted as isotropic, the 
value of uif' obviously cannot depend on the direction of n In other de 
words ueff now depends only on the magnitudes ofYv1:v,, and so can be 

averaged over n 

hE (1- - 
as well as n For the Coulomb case, therefore, using (16) 

W 1  FtM2 

(19) ef f 

I 

- 
where v,V,cose are given by Eqs. (17), a d  the allowed ranges o f d l  ,g2 
must be consistent with (16b), i,eo, in (3.9) appear only thosez1g2 for which 

u v ) # 0. Specificially, for given vl,v2,hE the integral (19) runs 

only over those directions n n for which 
AE 1W 

1b2 
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cos 8 2  1 AE 9 0 (208 1 
AE -1 + - 

llvv 

AE -13 cos e 4< 1 + - llvv 
- 

(20b) AE \* 0 

Despite i ts  apparent complexity, t he  integral  (19) can be evaluated in 

l’n2’ 1 2 
closed form. For any integrand F P  n v ,v ) 

r r 

A2 But vldh dGl i s  the  volume element G1 i n  the space formed by the  components 

of t h e  vector = Thus Eq. (19) can be replaced by 
W l  

*l 

A A  with the  understanding tha t  under the integral  sign v1,v2 now replace 

vlgv2 inEqs, (17) fo r  v, V, cos 8, 

the  equations re la t ings l ,z2  t o  v, V i n  (21) must be 

Consequently, recal l ing ( 2 )  and (4) ,  
A A  

* *  
A A -1 = v n  = V + m M  v 3 1*1 *vc 2 w 

A A = v s 2 = V - m M  -1 8 
J2 w 1  

With (22)’ the Jacobfa  af the  transformation fram Gld j2  t o  dvdV i s  
N t M  

unity.  Hence, 

d ~ d ~ 6 ( ~ l - v 1 ) 6 ( G 2 - v 2 ) ~ l - c o s  V2 2- e t -  AE cos 8)  (23) 
lJvv 

eff- 
AE a -  



wherein, recalling 8 = co8-l@;hv) 

1 1 
c 
E 
l 
I 
E: 
E 
c 
f 
I 
I 

= (V 2 + m2M 2 - 2 2  v + 2m2M01vV cos - 0 )  1/2 
1 

A = (8 + mlM 2 -2 v 2 - %M-'vV cos - 0 )  1/2 
v2 

Since (20) and the integrand i n  (23) do not involve+ or the azimuth angle 

4 ,  Eq. (23). simplifies to 
- 

where the limits of integration over 8 are determined by (20). 

Integrate (25) over the allowed range of cos 8, recallingstha$ 

where xi are the roots of g(x) = 0 in the integration interval. Because 

of (2461, the quantity Gl-vl?as 8 functiog. of cos s' vanishes only at 

..-1 --\-l# 2 -2 2.--2 2, - m2p1 v 
- 

COS 8 = M VV) \VI - v i 2 

(26) 

Thus 

.C 

I 

1 (28) 
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integrated over tha t  portion of t he  ffrst quadreat of the v,V plane fo r  

which cos 8, from (27) l ies  within the limits on coa 8 specified by (20) .  

These r e s t r i c t ions  on v,V implied by substf tutfng (27) i n  (20) take the  

form, f o r  posi t ive OF negative AE, 

-1 2 2 
1s (V - m2M v )  s v 

2 -1 2 s (V 9 m2M v )  

where, recalling Eq. (51 ,  

v e: smaller of vl,vi 
1s 

v = greater of v v q  1% 1' 1 

Of course 

A .L A 

Eqs.  (29) imply t h a t  (28) is integrated over t he  portion of t h e  f irst  

quadrant of t h e  v,V plane lying below the  l i n e  (termed l i n e  ( a ) )  

-1 V - m 2 M  v = v  Is ' 

ly ing  above t h e  l i n e  (termed l i n e  (b) ) 

and ly ing  

-1 m2M v - V = v  - 1s ' 

above t h e  l i n e  ( tewed l i n e  ( c ) )  

-1 V + m 2 M  v = v  
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The shaded region in F i g ,  I. is this allowed portion of the v,V plane, 

The 6-function in (28) vanishes unless 

- m  1 2  + =  2 = 1 2  1 1 2 z u v  = - m  v2 + - m  v = E = v y v i 2  + - m  v’ 
2 1 1  2 2 2  2 2 2  2 (32) 

where E is the total energy in the iaboratory system. 

the quantities v,V in (28) indeed must have values consistent with conserva- 

In other words, 

tion of energyo Eqo (32) is an ellipse in the v,V plane. Then, integrating 

(28) over V, and wain using (261, 

(33) 2 AE - cos 8, + - cos Ti) 
3 2  PVVi eff(vl,v2) = 

BE 0 

. 
fategrated in the range vi..< V Z  vu for which points v,V on the ellipse 

(32) lie in the shaded region of Fig. 1. Here, for given vl,v2 

2 1/2 Vi(v) = [6’(2E - I.Iv*)]”~ = [M-’(mlv; + m2vg - I.IV 11 

and, in (33), Vi replaces V in the definition of (2’71, foe., wow 

as one expects from Eqs, (17a) and (17~). 

Eqs. (34) reduce (33) to a simple integral over v, yield,ing finally 

where o y  ,v,” are given by (30b) 

remain to be determined. 

The integration limits v,,vu in (33) and (35) 
I C  

Otherwise, (35) is the desired result for 
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IV. Determination of 'vL,vu 

Evidently va,vu are the values of v at which the ellipse (32) 

intersects the boundaries of the shaded regfon in Fig. 1. 

and (32) one sees that the ellipse always has ,two real intersections with 

lime (e), of which both, or only one, or-nefLheP may lie on the boundary 

of the shaded region, depending on the values of vl,v2. 

o e e w  at v = v and v = v6, given by 

From Eqs. (31c) 

These intersections 

Y 

J IVY = - '2 
v - v1 * v2 6 

'i v = v i  - v; 

V6 = v.' + v; 

Y 

I 

where v 5 v6" Similarly, 
Y 

v, = v, - v, - 

AE 4 0, fee., v = v 1s 1 
2 

V B  = v2 * v1 

Because the ellipse (32) is everywhere concave downward in the first 

quadrant, it must intersect the bouadary of the shaded region no more than 

AE 3 0, i,e., v = v1 Ig 

AE 4 0, foe., v = v '  
1g 1 

in the first quadrant of the v,V plane lines (a) 

and (b) each have at most one intersection with the ellipse, at v = v, and 

v = v respectively, given by 8 

AE 3 0, i.e., v = v i  1s 
ve = v; - vi 3 
v 8 2 1  = v' 9 vg 3 

twice; it may not intersect the boundary of the shaded region at all. Thus, 
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r t fe r r fng  t o  Fig. 1, it fs clear  that  t h e  only possible l i m i t s  of integration 

i n  (33) are: 

( f )  va = vas vu = VB 

(if) va - - v,, vu = V6 

( i f f )  va = v y ’  vu = V6 

( i v )  va = v y’ vu = VB 

(v)  no intersections,  a~~f‘v1,v2) = o 

(38) 

The conditions fo r  t he  above cases t o  occur arc” (again referr ing t o  Fig. 

1) : 

(i) vy 2 vac , vbc 5 v6; o r  equivalently,vac <, vu 3 vbc 5 vB 

( f i  1 v v 5 v6 <, vbc; o r  equivalently, v < y 9 ac ac\ ’ vB 5 vbc 

(iff)  VQC ,< v Y V6 d VbC 
Y 

( f v )  vac < vy < vbc <, v6 o r  e q u i v a l e n t l y , ~ ~  vac , vbc 5 vB 

(v)  e i ther  v6 ,< vac or vbc < vy 

when v 

the  value of v at  the intersection of lines [ b j  and i c j .  

fo r  posi t ive or  negative AE, 

is t h e  value of v a t  the intersection of l i n e s  (a) and (c);  vbc is 

These values a re ,  
ac 

Eqs. (36) and (40) imply1’ that  for  AE 3 0 cases (i) - (v)  of (38) 

correspond t o  the following l i m i t s  i n  Eq. (351, and occur under t h e  following 

circumstances : 



. 

1 -v;  , V U t P  
+ v2 
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Eq, (41b) is obtained from the first set of cond-tions for  case (i) 

in (391, namely from v 2 vac , vbc .. vi; Eq. (41c 1 is obtained from the 

equivalent set vat$ v,, v 
Y 

4 ve0 Thus Eq. (41b) and (41c) must be be 

equivalent statements of the same restriction on the values of v 1' V2' AE, 

i .e,, if either of (4lbB) (blc) holds for given vl. , v2 , AE then 

both of them must hold, Indeed, the equivalence of (42b) and (42c) can 

be demonstrate$' directly, without reference to their common genesis in 

( 3 9 ) .  

(bld), (41e) (but no% (41d) alone) furnishes another equivalent statement 

The pair of equations (41d), (41e) is inferred from (41b); the pair 

of the restriction imposed by (41b) and (41~). 

equivalent to (42~); (43b) is equivalent to (43~); (44b) is equivalent to 

(44~); (45b) is equivalent to the pair (45~1, (45d). 

Similarly:0 (42b) is 

Eqs. (30a) and (36) - (40) show that for AE 8 0 the limits for cases 

(i) - (v) are obtained from those for AE 2 0 simply by interchanging primed 

and unprimed quantities, foeo, by interchange of vl, v' and of v2, vh. 

these interchanges, Eqs. (418) - (41c) immediately yieldlo the limits and 
With 1 

equivalent conditions for case (i) when AE < 0 ;  in fact the pair (41b), 

(41c) are invariant under theae interchanges, i .e., (41b) and (41c) are 

equally valid for AE 3 0 and AE d 0. An almost equally trivial argumentlo 

shows (41d) retains the same form when AE $ 0. 

subsidiary condition (41e) i$ implied 

AE < 0 Eqe. (41b), (41c) and (41d) (now without (41e)) remain equivalent 

For AE $ 0, however, the 

In other words, for  10 5y (41d). 



conditions f o r  case (i ) , althotqh the l i m i t s  '&,vu %n case t i )  are not 

the  sane f o r  AE p- 0 and AE $ 0. 

t r i v i a l l y  ehanged by the  fnterchange of v ,v' and of v v' i n  cases 

( if)  - (iv), E q s .  (42b), ( 4 2 ~ 1 ,  (44b) and (hbc) are equally val id  f o r  

although the  limits a re  

1 1  2' 2 

posi t ive and negative AEe 

and (45b) invariant ,  but does y i e ld  the correct conditions f o r  cases ( i i i )  

The c i ted  interchange does notleave Eqs, (43b) 

and (v) respectively when BE $ 0. But the  BE conditions corresponding t o  

(4%)  and ( 4 5 ~ )  for AE .$ 0 have rather  d i f fe ren t  foms" fo r  posi t ive and 

negative AE, which forms are  best obtained from the B E $  0 analogues of 

EqB0 (48) - (52) below, 

Eq. (45a) holds unless 

Of course, because vi, vi i n  (30b) must be r e a l ,  

P 1 2  
2 2 2  2 11  - - m  gP2 < AE 4 - m  v 

which expresses the  f ac t  tha t  the pa r t i c l e  Posing ene rw i n  the  co l l i s ion  

cannot lose  more than i t s  i n i t i a l  k inet ic  energy, 

Eqa,  (35) and ( 4 1 )  - (46) complete the specification of allE e f f  [ v , , v ~ ) ~  

As they stmd, however, E q s .  (41)  - (45) are somewhat inconvenient when 

one wishes t o  study t h e  dependence of' $ifon v for  fixed v2, as , e.g. ,  P 
--a wucu _ _  studying %he i O n i Z f % t i O A  or" 'uoiznd eiectrons 2 br incident protons 1. 

For t h i s  purpose it proves more convenient tod imina te  first the 6(v2-v2) 

in (251, ra ther  than-as previously--the ~ ( V ~ - V ~ ) ~  

s t i l l  holds, and there  a re  again f ive d i f fe ren t  s e t s  of l i m i t s  (38 ) ,  but 

L 

I n  t h i s  event Eq. (35) 

nodo 

v, = v1 - v2 

AE p 0 
v = v; - vi 

Y 

v = v; + v i  6 



' r  e 

I 

fP= = I?; - v; 

v = vi 4 v; 

v = v2 - v1 
V6 = v2 4 v1 

B 

-f 

AE: 0 

Comparing Eqs,  (36) and (37) with Eqs.  (471, it PP BPI that an 

( 47b 

lterna- 

tive set of limits and conditions fop cases (i] - (v )  of (38) when AE t @  

be obtained from Eqs.  (41) - (45) by interchange first of primed and unprimed 
particle velocities, and then by interchange of the subscripts 1 and 2, feeo, 

can 

10 by interchange of vl,vi, of v v'  and of m m In fact, ft can be seen 2' 1' 1' 2' 
that elimination first of 6(j2-v2) in (25) leads to the following set of limits 

in (35), to be inserted under the following circumstances (for AE 5 0): 

(i 1 va = v1 - v2* vu = v1 + v2 

when 

' a  = v1 (if) 

when m P "1 and 2 

OF 

- v2, vu = v; * v'  1 
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2 V 
AE 9 4mlm2[E1 - E2 * IE - - 

vl 

and 2m v B Iml - m Iv 2 2’ 2 1  

when m2 5 ma 

Comparfasla of Eqso (41) - (45) and (48) - (52) shows that the limits 
(41rp) and (50a) are identical, 

by eliminating first the 6 (9; -v ) in (251, must be identical with the previous 

case (i 1, obtained by eliminating first the 6 (;l-vl) 

equivalent eondftions (41b), ( 4 1 ~ )  and the pair (h), (41e), must each be 

equivalent to (50b) and to the pair (50~) , (50d) 
proved,” 

Eqs, (51); E C p b  (43) are equivalent to (48); Eqs. (44) are equivalent to (49); 

Eqs. (45) to 

In other words, the present caae (iii), obtained 

2 2  
Correspondingly, the 

These equfvalences can be 

Similarly it can be prolred” that Eqs. (42) are equivalent to 



Eqe, (48) - ( 5 2 )  pertain only when AE 3 0. As previously, however, limits 

v ,v and Conditions when BE 6 0 a r e  obtainable from Eqs.  (48)  - (52) by u a  
interchange of F ~ ,  v i  and sf v2,vio In summapgt, 10 for AE $ 0: 
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O F  

Eq. (48d) c and 2 

O r  

Comparing Eqs. ( 

iy - 

m - m  Iv 3. 2 2  

9) and ( 3 3 ) ,  it is clear  t ha t  L e  calculation of 

uefP(v ,T ) fo r  any (eez~trgLp) fnteraeticn would not be essent ia l ly  different  

from the calculation performed here of u:; f o r  Coulomb col l is ions.  Whenever, 

as i n  (IO), the  angular variation of &'depends solely on the  angle x between 

bE E 2 

0 

and c r b E [ 3 j 2 )  defined by (9) w i l l  depend only on cos 8 and cos 8 '  
h 

But cos 8 

defined by (18) w i l l  be &n average over 

only on V,v and cos 8 ,  where Eqs. (17)'and (20) continue t o  hold. 

eff then can be eliminated in favor of BE v ia  ( 5 1 ,  so t h a t  uhE (vl,v2) 

of a uAEk,g2) depending 

Thus one 

will be led  t o  a s ingle  in tegra l  involving uAE of fam/33),  between upper and 

lower l i m i t s  v ,v gfvtn by p ~ e d ~ d y  %e f'omu.latsdeveloped i n  t h i s  section. 

Similar remarks per ta in  toan  uverage over allNnl& of any function of v,V, 

cos 8 ,  where these quant i t ies  obey Eqsb (17)o 

11u 

O f  Course only i n  special  cases, 

such as t h e  Coulomb case, w i l l  the  aforementioned integral  from -yg t o  vu be 

doable i n  closed form. 

The fact  t ha t  there a re  four sets  of l i m i t s  va,vu, plus the  case (v )  

Off" = 0, can be interpreted,  8s c m  res t r ic t ions  l i k e  the  pa i r  ( h a ) ,  (41e), AE B 

bAt I aL-37 al-jt 6s 38 hcre, 

Stabber*s5'9 Eq. (15) when mg = m2" 

I maiitfon that the r e o - d t  (35) dses reiiize ts 



V. Additional Details and AEapPSffeations 

To keep the argument from bogging down in details, many of the 

ebssertfons made in the previous seetion were not thoroughly justified 

or sufficiently discussed. 

provide8 added details of their Qustifieations. 

This section amplifies those assertions, and 

as0 ( 3 9 )  

The ellipse (32) has semi-axes 

t 
i 

along \p and V respectively. 

the ellipse (d)  with the v-axis in Fig, 1; B is the intersection of the 

ellipse with the V-axis. 

In other words, A is the intersection of 

1 Suppose for definiteness AE 3 0, so tha t  v i  Q y1, and vlS = v i  v18 = v  
in F i g ,  1, Then for any given BE it f a  possible that 

or, it f a  possible that 

A suif'feient 

2 V 

For Q5eob) it 

IS 

condition for ( 5 4 s )  fe 

1 >.* Q 

suffices that 
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2 
2 2  11  mv2  e<  m v  

and ml << m2 (55b) 

l 2  
2 11 AE - m  v and 

The conditions (558) and (55b) can occur. In other words, it is possible 

tha t  the  e l l i p se  intersects  the V-axis w e l l  above the intercept of l i n e  ( c ) ,  

1 2  
2 1  or  well below t h e  intercept of l i n e  (a )  On the other hand, as AE + - mv 

f O r  fixed vp,v2, the  l i n e s  (a) and (b )  i n  Fig. 1 coalesce, 

conceivable t h a t  v 

m a y  be between v 

two r e d  intersections v ,v 

coincide. 

l i n e  ( c )  being tangent t o  t h e  e l l ipse .  

Thus it is 

and v6 both may be less than v or  t h a t  one or  both 
Y ac ’ 
and vbc; or  t ha t  both may exceed vbc. There always a re  

with t h e  e l l ipse,  however, which a t  worst may 
ac 

Y 6  

From (36a), th i s  occurs only when v2 = 0, and corresponds t o  the  
\ 

Now because the ell ipse is everywhere concave downward, it l i e s  above 

the l i n e  ( c )  fo r  v 3 v s v6, and Pies below l i n e  ( c )  for  v ,< v 
Y Y 

Thus if v 

i f  vaC .g: v, and vbc ,< vB, the  e l l i p se  is lying above the  l i n e  ( c )  for  

V~ .$ v 4 vB, because the  l ines  (a )  and (b )  slope up and (c  ) slopes down. 

Hence the  ellipse must come down to ( c )  t o  the r igh t  of vbc, i .e., vbc ; v6; 

s imilar ly ,  the e l l ipse  must come up t o  ( c )  a t  a point t o  the l e f t  of vat, i.e.,  

v .d v because the e l l i p se  already l ies  higher than does the l i ne  ( c )  at 

and v6 6 v. 

d vac and vbc d v6, then surely vae ,< v, and vbe ,< vBe Conversely 
Y 

y ae’ 

v = v  ae 

The above argument shows the two al ternat ive statements of the condition 

Similarly, i f  v6 ,< vbc, then v < v B bc’ (i 1, Eq. (39) ,  rea l ly  are equivalent 

and vice versa, because the e l l ipse  lies below ( e )  for v ?, v6*  If 

the e l l i p se  must intersect l i n e  ( a )  at a point between v and v6 
vy 9 vat k.6 Y 

lying above l i n e  ( c ) ,  i . e . ,  a t  a point t o  t h e  r igh t  of v * i f  vac < v,, then ac ’ 
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surely v 6 vaC 4 v6" 

are  explained and shown to be equivalent. 

In this fashion the conditions for (ii) , Eq. ( 3 9 ) ,  

Now consider (iii), Eq. (391, and refer to (iff), Eq. (38) .  If 

v = v  andv =v6, the ellipse is lying above the shaded area of Fig. 1 & Y  U 

only in the range v 6 v 4 v6" So surely vac 4 v and v 6 vbc' If 
Y Y 

vac4 

vo $ vat, vB 6 v 

tions are condpalable with both v and v6 $ vic ,  or with both 

v and v6 4 vbca 

on Y or v 
Y 6 '  

vyD then vcr .f v if v6 4 vbcs then vB < vbco On the other hand, 
&C' 

does not guarantee case (iff), because these condi- bc 

Y 

In other words, without some additional prescription 
Y 

are not equivalent to 
$ ' vbc the conditione vo \< vac , v 

Vys v6 6 vbco This is the reason there is but one condition 

for case (iff), Eq, (391, instead of two equivalent conditions as in 

cases (i) and (ii). 

similarly, 

The conditions f o r  cases (iv) apd (v) are  understood 

It is worth while to show that case- (v.)-really can occur. In 

fact, I shall show vbc # v can occur and can be.consistent with 

v,.c Vaes v @\< vbc, thus illustrating the assertion that these conditions 

on v v are not sufficient to guarantee case' (iff) holds. Using 

Eq. (31~) and (rceb), at v = v 

Y 

a9 s 
(and BESO), the value of V is bc 

If the V-intercept B of ( 5 3 b )  is less than this Vbc, then the ellipse 

surely l ies  below line (c) for v f vbc, and so vbe surely is less than 



a 
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the first intersection v of the ellfp,se with line (c). 

sufficient condition for vbc e v 

80 a 
Y 

is 
Y 

I, and Eq. (57) is satisfied when v2 = 0, vi 3 0 (its smallest value 

i.e., 3m 4 m 1 1  m 

Tic 6, 1 2  

Hence vbc 4 v corresponding to case (v) of Eqs. (38) and (39) occurs. 
Y )  

The conditions v, < vacP vB \< vbc are 
\ 

When v2 = 0, v' = 0, 1 

using (601, Eqs. (59) will be satisfied if 
1 



foeo, if 

which also holds because 

+ m2)2 

so E q s .  (59)  can be satisfied, and yet vbc can be ’ v 
Y 

Eqs .  ( 41 )  

FOP AEaO, the conditions v v v v of (i), Eq. (391, are: 
y ... ac, bc 6 6 

and 

or 

and 

(a2)-’ M ( v l  + vi)+ vl + v2 

m v + M v p (  (m1- 2) 1 1 -2v2 

Eqs, (63a) and (63b) are both encompassed in the single condition (41b). 

The other set of conditions in (i , Eq. (39) , namely v 4 v, , ac 
vbc 3 vB, are: 



I ’  
I 

I 

~ 

I 
! 
I 
I I 
1 
I 
I 

I 
I 
I 
I 

I 
I 

I I 

-~ 

and 

or 

and 

M V ~  + (mi - m2) v i  4 h2v; 

Eqs, (65) art both encompassed in the single condition ( 4 1 ~ ) .  

Squaring both sides of (41b) yields 

l2 + (ml - m2)2 v: + 2M)ml - m21 vl v i  < 4m2v2 2 2  
v1 

m a - > - - .  q.. n I1 .I i Y . .I 
U A Y I I I Q A  AJ 9 U q o  \VAG y A S A U P  

8 v ;  + (ml - m2)2 vi2 + 2M vlvi g 4m;vi2 

Thus Eqs.  (668) and (66b) are identical if 

2 2  + m -m v12-4m 2 2  v*  
M2vi2 + (ml-m2y v: - 4m2v2 .’.1 ( 1 2y 1 2 2 (67a) 



I 

I 

i . e . ,  1 
i 

mi + I m i  m 2 1 ~ 1  
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4 %v2 

which is true. 

can derive (67b) and (67s), and so one can conclude tha t  i f  (66s) 

holds then (66b) holds, and vice versa. But taking the square root 

of both sides,  Eq. (66a) implies 

Converrrely, s t a r t i ng  with the  obviously true (68) one 

t r i n r ~ i c a l l y  positive. This ergument shows Eq. (66s) implies Eq. (41b). 

Similarly, Eq. (66b) implies Eq. ( 4 1 ~ ) .  Therefore it has been 

proved tha t  Eqs. (41b) and (41c) a re  equivalent, 

or 

2 2 2  2 4 y m v- -4m-v- t 4 % 1% - m2i v1v2 $ M- - 28E 

1 m 

m -m 1 2  v v  1 2  

Eq. (70b) becomes 
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AE?, - 4mlm2 - 1 
I L 2  2 2 1 2  M2 + ?p v v - 111 v v 

I -1 

Hence, since El = m v2 /a, E2 

Eq. (41b) implies the condition on AE in (41d). 

with (71) one can infer (7Ob) and (TOa), 

root of both sides of ( T O e r ) ,  Eq. (71) implies 

m2v:A, St has been shown that 1 1  ! , -  

Conversely, starting 

Thus, taking the square 

Mvi 4 

Eq. (72) is not immediately equivalent to ( 6 9 ) ,  however. To 

obtain Eq. (69), it is necessaxy to impose the additional condi- 

tion that 

imply Eq. (41b), but 

imply (41b). On the 

nom which one knows 

that the pair of conditions (ha), (41e) does 

other hand, starting with (41b) one obtains (69) 

(73) must hold: because Mv! is intrtnslsnlly 
1 

positive. 

(41b) implies (ha), Eq. (41b) both implies and is implied by the 

pair of conditions (41d), (41e), i. e. 

(41d), (41e) are equivalent. Note that (41e) is not encompassed 

in (41d); when v2 = 0, (41e) fails, but (41d) will be satisfied if 

AE is as large as E, its maximum allowed value. 

Consequently, because it already has been proved that 

Eq. (41b) and the pair 

(71) 
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Eqs. (42) 

The conditions v v V of (ii), Eq. (39),  are y 4 ac 4 6 4 vbc 
( A E ~ O )  : 

These three inequalities yield, in turn 

(ml-m2)vl -Mv' ,< 2m v 1 2 2  

Each of" (75e), (75b), (75c) must be satisfied. 

(75b) can be combined into 

Eqs. (75a) and 

which implies both (75a) and (75bl0 

for case (if), Eq, ( 3 9 1 ,  reduce to (42b), 

no condition that m17m2" 

(42b) would exceed the right side, ioeo ,. Eq. (42b) could not 

possibly be satisfied, Therefore the limits va = v,, vu - v6 
of case (if 

inequality (42b ) 

Thus the first set of conditions 

So far there has been 

But if ml<rn2, the left side of the inequality 

Eo_. (38 1 QCCW z?n,ly vher! E I ~ : % ~  a12 ihii v2 o"0ys the 
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and 
v' + vi < (a2) -1 M(vl + vi) 
2 

which immediately reduce to (42~1, Note Chat when AE>,O 

because v1 >/ vi and M >* (y-m2) 
can be removed in (42~). 

Hence the absolute.value sign 

However, retaining the absolute value 

sign keeps the forms of (42b) and (42c) as alike as possible, which 

proves convenient when the. situation AEtO is- considered (see below). 

To show the equivalence of Eqs. (42b) and (42~1, proceed as 

follows. 

4m2v2 2 2  6 $vi 2 + (ml-m2) 2 2  v1 + 2M(ml-m2)vlvi 

Eqs.  (78a) and (78b) are identical if (67s) holds, after which 

one follows on to the obviously true (681, .just as before. Con- 

versely, because (67a) holds, either of (78a) or (78b) implies the 

other, But (78a) and (78b) imply, respectively, 

(76) 



from which the absolute vd.ue*signs ccm+be removed because 

all terns under the absolute value signs. are positive (with ml>m2). 

Thus the equivalence of the right inequd.ftics+in (42b) and (42c) 

is proved. Similarly, starting from (67a), one infers that 

each of 

Eqs. (80a) aord (80b) are the left inequalities of Eqs. (42b) and 

(42~) respectively, 

This completes the proof the$ (42b) and (42c) are equivalent. 

A condition on AE3like (41d) can be derived in this case (ii), 

but because of the fact that-v2-is-bounded-both from above and from 

below in this present case (ii); the AE condition now is rather more 

aftkward than was (41d) 

Eqs. (43)  

The conditions vac 6 vy, V6 E rbc o f  (iii), Eq. (391,are (AEp): 



and 

which become, respectively, 

i 

me emabller of the right sides of (82a) and (82b) is 

mi - ~ ~ m ~ l ~ i  

Thus if (43b) holds, both (82a) and (8Eb) hold. 

(43b) is the condition for case (iii), Eqs. (39). 

In other words, 

yFltlng (4s) in tne rorm 

bp* * k1-m21 VI,.< k; (83s 1 
a d  squaring both sides leads to (43c), in the same fashion as 

(41b) led to (?l)O 

iaf er 

Conversely, working back from (43c) one can 

absolute value sfsn in (83b) are fntripaical$y positive. 

(43c) alone is equivalent to (43b); a subsidiary condition l i k e  

Thus 



(h) is not needed in this case. 

Eqs. (44) axi8 (45) 

E q s ,  (44b) and (44~) are deduced, and their equivalence 

established, in essentially the saute manrrer as in the above 

amplification of Eqs .  (42). 

The condition for case (v), Eq, (39) is either v6 ,e vac or 

< v  These reduce, respectively, to: vbc y e  

or 

t 

The larger of the right sides of (84a) and (84b) is 

I ~ m 2  (vi - mi 
Thus if (45b) holds, either (84a) or (84b) will hold. 

is the condition for case (v),  Eq. (38) , i o  e., is the condition 

for (45a) to hold. 

Write Eq. (45b) in the form 

Thu8 (45b) 

m i +  I Y - ~ &  - h 2 ~ 2  

and compare with Eq, ( 6 9 )  Then it. is- clear squaring both 

sides of (85) will lead to (711, ioe., to the AE condition of 

(41d) which is identical w i t h  .the AE qondition of (45~). 
-om this AE condition one can again infer (72), which with the 

C,onveraely, 

new additional condition 



i 

becomes (85). 

conditions (45c), (45d) fa demonstrated. 

ones sees (45d) is not encompassed i n  ( 4 5 ~ ) .  

Therewith the  equivalence of (45b) and the pa i r  of 

Also, l e t t i n g  now El = 0, 

Eqs.  (45b) and the pair (45c), (45d) axe general conditions 

f o r   CY^ (vl,v2) t o  vanish. Of course, therefore,  Cqs. (45b) - (45d) 

are  satisfied (as can be ver i f ied)  when v2 = 0, v i  = 0, % < m2, 

the  par t icular  i l l u s t r a t i v e ~ c i r e t M s t ~ ~ s  under which tpAE = 0 

was previousay established, by showing t h a t  i n  these particular 

cfrcmstances Eq, 57) holds 
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(86) 

Relations Corresponding t o  Eqss (41.) - (45) when A&O 

The l i m i t s  and the conditions f o r  case8 ( f  ) - (v)  , Eqs, (38) - 
(39),  depend only on t h e  values of v,, vB, vr, vB, vac, vbc, 

Evidently (36b) and (37b) are obtained from (368) and (378) respectively 

by wri t ing vl f o r  v i ,  v i  fo r  v 

i s  invariant under t h i s  interchemgc, Eq. (408) reads 

v f o r  v i ,  v i  for  v2. Eq. (40b) 1’ 2 

= (2me)” M(v,--v:) AEaO 
L . L A  

and 

L C  = (2m2)-l M(vi-vl) AI!$O 

reca l l ing  (30b) So vac 
AEbO by interchange of v ,vg and of v2, v i .  

and inequal i t ies  following direct ly  *from.Eqs; . f 38) and (39) are 

for AEGO also i s  obtained from vac f o r  

Thus for AR<O the  l i m i t s  1 1  

immediately obtained from-making t h i s  interchange i n  those of 
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Eas, (41)  - (45) which fo r  @# followed d i rec t ly  from (38) - (39). 

Specifically,  then, the l i m i t s  i n  cases (i) - (fv) are  

v = v i - v ; , v u = v  + v  a 2 1  (id 

and of course (458) continues t o  s t a t e  (without replacing v, by v i ,  

or  v2 by v i )  the value- of ai," when case (v-) occurs wi th  AEcO. 

Interchange of vl, v i  and of v2,vi converts (41b) t o  (41c) and 

vice versa. 

AEdO Qust as w e l l  as fo r  AE&Oo 

equivalent conditioos inferred from ( f )  of Eqo (39) fo r  A&O, are proved 

equivalent precisely as i n  the  circumstance AEm. Similarly, Eqs. (69)- 

Examining Eqs. (66a)-(68) it is seen tha t  they hold f o r  

So (41b) and (b), the presumably 

0 # I . . \  # I -  \ I - - \  . . .  
\ I 3 1  YU n u u  usyrnu vu UAAS O A ~ A A  VI O Y O  uu u u m u  UAA- parr. \ T A U #  \-.AS 1 

.. - I C .  .. , 4 .  

is equivalent t o  Eq. (41b) for AB0 as w e l l  as fo r  AEN. 

when AE(0, the  condition ( h e )  is encompassed i n  (41d), f o e o ,  for  

However, 

-My" Awdn it is rn+ -vu nnanann-* r-.rreuoufl +ye ezpl=pz+y !&la! =+th (41e)o 5.e .+t=~~~+yr== 

t fon  of Chis assertion goes as follows: 

If BE60 satisfies ( h a ) ,  then surely 

I n  terms of the veloci t ies ,  Eq. (88a) is 

t 

t 



These equations factor into 

So one can ceaeWde 

p2v2 -lV1 "1 > "2 

ml "2 v2 7 v '1 

Now consider (41e), which is 

m2v2 5 iml - m )v "1 ' m2 wnen 
2 1  

But (881) ,obviously fo$lows f*om (88d), (888) follows from (88e), 

remembering 5 > mle 
t 

It has been proved, therefore, that, when AEeO Eqs. (41b), (41c), 

and (1l.d) aln_n_e?--vithnIzt p!1C)--PYP cn=,iycltnt ccsditicne isr 2gss ( 2 ) .  

Of course, with AB0 one must take the limits for case (i) from (87), 

not from ( h a )  
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L 
I 

One sees s imilar ly  t h a t  the pair  of Eqs.  (42b) and (42c) 

&re invariant under interchange of vl, v i  and of v2, v i  ( the reason 

the absolute value sign i n  (42e) was retsfned; - -Correspondingly, the  

argument t h a t  Eqs 

f o r  AEsO, 

(42b and t42c 3 * are- equivalent remains va l id  

When A B O ,  the  condition f o r  ease (iii) is 

Because f 43b) is not one .of - a - p a i r  of inequal i t ies ,  as was the  

s i tua t ion  f o r  (b ib) ,  (4 lc )  and for (42b), ( 4 2 ~ 1 ,  one sees tha t  t he  

condition f o r  case (iff), AEsO is not the same as f o r  case ( i i i ) ,  

A E N .  

second inequality forming a pair with- (43b); Eq. (89a) fo r  BE30 

r e a u y  is  not equivalent t o  (43b). 

Moreover it is not a matter of my having overlooked t h e  

For instance, with AE30, consider 
-. _ _  - , / - *  - ,a- , 

WAC circuIILmlreJIuc v2 - v ,  VI - V o  111514 ,  .C-CC&AAAa& \ V U /  \ U Y m l  
I 

is satisfied i f  

which i s  ident ica l  with Eq. (61& i.e., is  always s a t i s f i e d ,  as 

was seen from ( 6 1 ~ ) .  

Oa t he  other hand, (43b) is not,  because with v i  = 0 the  r ight  

a ide of (43b) is negative. 

So (89a) is satisfied when v2 = 0, v i  = 0, 



except^'of ' course -that now A B O )  provided also 

hp1 3 p1 - m2p2 ( rn)  
The derivation of (89b) is explained below, under the  -heading, "Relations 

Eqa. (44b) and (44c), l i k e  (42b) and ( 4 2 ~ 1 ,  form an equivalent 

pa i r  invariant under interchange of vls v o  and-of v ,v', and therefore 

equally val id  for  posit ive and negative AEe 

case (\I), uAE (v,,v2) = 0, when AEsO is after interchapging i n  (45b) 

1 2 2  

The condition fo r  
eff 

The analogue of (45c), l i k e  the analogue of (43c) is derived below. 

It turns  out t ha t  for  AEQO, t he  condition (89c) is equivalent t o  ths 

assertion t h a t  (4€Q) again holds but t h a t  now (8911) fails, i.e., i n  

case (v)  instead of (89b) 

2mlV1 s 15 - m2p2 

Eq. (89d) is derived below under t h e  same heading as (89b). 

?lV1 ' 19 - m2p2 
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Eqs. (47) 

To eliminate first 6(G2 - v2) in (251, use (24b) rather than 
(as previously) (248) to express casT in terms of V,V. 

Eq. (27) is replaced by 

Then 

and in (26) 

v,.. .. . 

The 6 function in (918) is 6(q1 - vl), reexpressed in terms of 

v,V using (248) and (90a). This 6 function becomes 

H 

The restrictions in v,V implied by substituting (90a) i n  (20) 

take the form 



I -  
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2 -22 2 
-1 \< ?+,M v - v 2  \* 1 + -  AE 

llvv 

In other words 

-1 2 2 (V - mlM v) h< v2 

AES 

I AD,O 

J L 

L AE&O 

Eas. (O?a\ nnd fO?b\- for AE>B and AESO- are summarized bv 

where 

= smaller of v2,v; v2s 

2g 
v 0 larger of v2pvi 

Eqs. (94) imply that (918) i s  integrated over the portion of the 

first quadrent of the v,V plan lying below the line [again termed (a)] 

(928 1 

( 938 ) 



. 

V - yM-'v = v 2s 

lying above the line [again termed (a)] 

m,.M-Iv - V = v 2s 

lying above the line [again termed (c)] 

-1 
a3 V * m l M v  = v 

The 6 function (91b) vanishes unless (32) holds. Integrating over 

V, the 6 function contribution from (glb) now involves 

with V,(v) still given by (348). Therefore, in Eqs. (911, after 

integrating over V, the factors unddr the integral sign multiplying 

the terms in COB si become 

Moreover, substituting (34a) in (gOa), me sees that Eq. (34b) 

continues to give @Os 8 

expects 

in terms of vl,v2,v and Vi, again as one I 

It follows that Eqs, (33) and (35) stiil hold when one 

el$mlnates first the 6(G2 - v2) in (25), but that the limits 
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( 96a 1 



now are determined by the intersecbions+ of lines (96a), v&’ vu 
(96b) and (96~) with each other. and with the ellipse (32). 

Moreover, let v=, vB, vy, 

(e.g.9 Vac is value of tp at the intersection-of lines (a) and 

(c), v is the smaller tp at the two-intcreections made by line (c) 

with the ellipse), so that Eqs. (38.). and (39) continue to specify 

the limits vt, vu to be inserted in (35).  

the values of v,, vB, vy, v6 are as quoted in Eqs. (47). 

be defined as previously v6’ VacsVbc 

Y 

Then one readily sees 

In particular, suppose AE>O, so that 

= v; 
2g 

V 2’ = v  v2s 

Hence, substituting (96a) in (32), 
r 

~ ( V V  1 + m,M -1 v) 2 + 5 1 2  pv = - m  1 v2 + m v2 
2 1 1  z 2 2  

2 
1 1  v + 2mlv2v = m v 2 (M - m2)v2 + 

2 2 + 39-v = v- 2 
-:2 + - - 2 -  

1 

2 2 
1 (v  + v2) = v 

C - -  A L -  A--- --A&- Eq. \rvv~ nas w c  uwu &-UUYP 

1 v + v 2  - v 

v + v2 = -vl 

(99)  
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of which, by def ini t ion,  vs is t he  root which possibly (though 

not necessarily) can l l e  i n  the first &aadrant. Evidently, therefore 

v, = v1 - v2 

The other results i n  (47a) and (47b) are derived similarly. 

A more simple argument i s  t o  note that  when AE30, Eq. (31s) convert8 

t o  Eq. (96a) if first the prime is  removed from vi ,  and then the  

subscripts 1, 2 are interchanged i n  vl,v2, and i n  v' v' 

AEsO, Eq. (3la) converts to Eq. ( s a )  if first the prime is added t o  

when 1' 2; 

v The same 

operations convert Eq. (31b) t o  Eq. (96b), f o r  AEaO and A U O  

and then the  subscripts 1, 2 are interchanged. 1' 

Eq. (31c) i s  converted t o  ( 9 6 ~ )  by interchange of 1, 2 after adding 

the  prime t o  vl(AE,P), or dropping the-prime from vi(AEb0). I n  

other words, Eqs. (3 l a ) ,  (31b), (31c) are converbed t o  t h e  

corresponding Eqs . (96a), (96b), (96c ) by first interchanging 

vl,v2 with their  correspondiag primed quant i t ies  vi,vi, and then 

interchang$ng all subscripts 1, 2. 

equality in Eq. (321, theee interchanges-leave Eq. (32) =altere& 

So Eqe. (47) must be obtainable from Eqs; (36) and (37). by f i r a t  

intcrchmngl ng prgmed and t q r i m e d  par t i c l e  velocities 

But, because of the  l a e t  

and then by 

interchange of subscripts 1, 2. Correspondingly, from Eqs. (40) 

t h e  intersect ions vat, vbc now are  
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as cen be ver i f ied .d i rec t ly  from Eqs. (96 ) .  

Eqs. (48) 

With AE)i), using Eq. (4?a), case (i) of Eq. (38) now 

corresponds t o  the limits 

( lo l a )  

(101b) 

v = v= = v1 - v2 a 

Y = pg = v + v 2  
U 1 

as in Eqs. (48a), and consistent with the  fnterchange ru les  whicb 

have been ci ted,  Similarly, Eqe. (4lb) ,  ( 4 1 ~ )  yield t h e  corres- 

ponding c r i t e r i a  (48b), (48c) for the occurrence' of the l i m i t s  

(48a). Eq. (48d) is obtained from (48c) by, exactly the  same 

argument, Eqs. (69)-(71), as was used t o  obtain ck 's. d) from (41b). 

Because (48c) differs from (4 lb )  by the-interchange onzy of sub- 

s c r i p t s  1, 2 (primed and tanprimed quantit ies are not interchanged 

i n  going from (41b) t o  (48c)r ) , t h e  corresponding intierchange i n  

(41d) ahogd yield the BE condition equivalent-to ( 4 8 ~ ) .  

mere is t'ne proviso, nowever, that i n  get t ing (hiti j from ( h i ~ o j ,  

AE enters through 

- 



t 

whereas, in proceeding from (hac)  BE enters through 

So the presently desired analogue of (ha) fer obtained not 

merely by interchmgfng subscripts 1, 2, b u t ~ d s o  by changing 

the sign of AEe Perfsmfng these operations on (41dl) yields 

which is the AE condition (hsd), 

To check the eorreetness of t h i s  argument, I will obtain 

(102) directly from (48c 1, Write (48~) in the form 

Squaring both sides of (103% yields 

Eq. (104) is the AE condition (48d) ,  Conversely, working back 
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from [104), one gets 

I 

which is the analogue of ("P2), 

(103) requires the extra condition 

80 to make (104) equivalent to 

which is the analogue of (h). 

The condition (106) is no% needed a~ a supplement to (48d), 

however, because the AEbO Eq. (106) is implied by (48d), Just as 

(41e) was implied by (41d) when b&O, 

l i n e s  of Eqs 

The argument follows the 

(88er) - (8843) If (48d) holds and AEaO, then 

In terns of the velocities 

2 2 
m2 > ml y v l  - m2v2 - (m2 - m )v PP a 1 2  % o  
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These factor  i n to  

yielding 

m2 > m 1 

m > m  1 2  

Eq, (lO7d) implies (10'Vf); Eq. ( l O 4 e )  implies ( 1 0 4 g ) .  

It has been proved, therefore,  t h a t  when A E N ,  Eqs, (48b), 

( 4 8 ~ 1 ,  and (48d) are equivalent conditions fosuse of the l i m i t s  

(48a). 

conditione for  (438) must be the  same as for (48a), 

(48d) is ident ica l  with ( 4 3 ~ ) ~  

i43b j , i43c j , i 4 b  j and j4Bc j each a i i  are  equivalent , remembering 

(43b), ( 4 3 ~ 1 ,  (48b) and (48c) each already have been proved 

equ ivdea t  t o  (48d). 

But these l i m i t s  are  the  same aa (43a), Thus t h e  

Indeed, 

So, when AE>A, the  conditions 



The interchange of vl,vi, of v2,9p1 I and of' y p m 2  in Eqs, (42) 

yields Eqs, (49)* But now the Ifmite in Eq. (49a), presently 

ease (if), w e  identical with $he limits fa (44a), previously 

%emad case (iv) Eqs (44 1 m d  (49) both apply only when 

r n Q  1 
tion 

that 

m 

(44b), (44c), (49b), and (49e) aP1 are equiyeelent. 

To show the equivalence of these conditions, note first 

Eqe, (79)-(79) have provedthe l e f t  inequdities in Eqs. (42b), 

moreover. So it must be possible Lo show the eondf- 2' 

( h e )  are equivalent, as are the r ight  inequalities in (42b), (42c). 

80 the left (and right) faequaPit%ee in (44b) and (&) must 

be equivalent; similarly the %e€% (and right) inequalitfee 

in (49b) sad (49c) are equivalent, 

(a) one of the right inequalities in (4kb) and ( 4 k )  is equivalent 

to one of the left inequalities in (49b), (49~); (b) one of the 

left inequalities in (44b), (44~) is equivalent to one of the 

right inequalities in (49b), (49~) 

So it is sufficient to show: 

I shall compare the right inequality in (44b) with the left 

inequality in (49~). These take the respective forms 



I 

because the absolute value sign can be removed from ( 4 9 ~ )  when 

vq +v29 f.eo9 when &a. 
Squaring (108a) 

2 

Squaring (108b ) 

I? 2AE - 4  
m2 

which becomes ident ica l  wi th  

Now s t a r t i ng  from (109) one works back t o  (loeb),  without 

subsidiary conditions, i.e, conditions ii09j and (i08bj are 

equivalent. S ta r t ing  from (109) one a l so  works back t o  

p 2 v 2  - (m2 - m1)v11 ,< 

which is equivalent t o  (108a) only if 

a 2 v 2  >f (m2 - "l)vl (110b) 



I Page 50 

So either right inequality fn (44) is equivalent to (109) 

supplemented by (IlOb); either left fnequalfty fn (49) fs  

equivalent to (109) above. 

Next compare the left Pnequaffty fn (hhc)  with the right 

inequality in (49b), These take the respective form 

because the absolute value 8fgn can be removed from (44~) 

when AE3O. Eq, (llla) yield8 

- 4m m v' .r +at \m - m JV v 1 2 1  2 2  1 1 2  M -* 4mv' 2 2  

Eqo (lllb) yields 

which becomes identical with (112) 
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Starting fpom (1121, one wrks back to ( l l la ) ;  starting 

from (112) one also work8 back to 

which is equivalent to (lllb) only ff  

So either left inequality in (44) is equfvalent to (112) alone; 

either right inequality fn (49) is equivalent to (112) 8upplemented by 

(113b) 

The above results, together with the results stated following 

Eq. (11Ob) may be summarized a8 lollowrr, The conditions (109) 
. 

‘- .rn\ ----- f J l f i 1 . 1  -a- - rnQar l rnt .  kn hhe set of 
E -  &---- %---, - 

inequalities (44); the condition8 (109) plus (112) plus (113b) 

are equivalent to the entire set of fnequalftfes (49), 

addition, (109) alone is equfvalent to the left inequality in (49). 

I next show that (109) plus (112) plus (11Ob) also imply the right 

inequality in (49). 

In 

Eqs. (1091, (112) and (11Ob) imply the inequalities (44). 

The left inequality ( 4 4 ~ )  ii 
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E o e o  y 

Eq. (f14e) is the right inequality in (49b), whfch already is 

known to be equivalent to the right inequality ( 4 9 ~ ) ~  

This pyves (109), (1P2), and (lIOb), imply the entire set of 

inequalities (49), whish in t u r n  imply the set  (109), (112) and (113b). 

On the other hand, P now show (109) , (112 1 and (1P3b) imply the set 

(1091, (112) and (110bPo Eqs. (1991, (13.2) and (113b) are known to 

imply the entire set (49) plus the l e f t  inequality (44), From (49c) 



1. 
Mvi - (m2 - m )v. 1 2 8 %vl 

45m2v2 - 2m,.(m2 - ml)vl 4 18v2 = M(m2 - y ) v ;  

So, using the l e f t  inequality (49b) 

which fs t he  r igh t  inequality (44b), 

Therefore (109), (112) and (113b) imply the en t i re  set (44)  

set ( 4 4 )  are equivalent. t o  the entire set (49). 

E980 (50) 

The l i m i t s  (508) coincide with (ha) .  Therefore (50b) must be 

equivalent t o  (41b) or  ( h e )  

i~ =e inllnvn, 

The dfrect proof of'  t h e  equivalence 

Write @Ob) and (41~) fn  the  forms, respectively 



Squaring (115a) 

Squaring (115b) 

So (115~) is identical with (115d) if 

i . e .  i f ,  

Conversely, working back from the identity (115e), one infers that 

(115d) and (115e) are equivalent. 

Eq. (115d) implies 

Eq. ( 1 1 5 ~ )  implies (1158); 



I *  

I Page 55 

Thus (4le) is equivalent to (50b) plus 

However, (116b) is implied by (50b), BLI follows: 

- m2 

v2 - 
4 m m v ' -  1 2 2  

m 21 v 2 ] 4 2ml [2m2vh 

- Mlml - m2(v2 a< 

M[MV; - 1% 

(116b) 

But the left side of (116~) necessarily is positive for AEN. 

the right side of (116~) is positive, f o e o p  (116b) holds, 

So 

This completes the proof that (5Ob) is equivalent to (41b) or 

(41c) 

of the pair (41d), (he); there is ao simple way to deduce this 

The pair of conditions (50~) (50d) now is simply a rewrite 

AE condition directly from (50b)o 

E_qs, 

a - _  * Eqe. (51) bear tne same reiutfoii t e  Eqs. (42) GS (49) ai4 tn  

(441, there is no need to discuss them further. 

equivalent to (45b). 

proof" of the equivalence of (49) and (41). 

Eq. (52b) must be 

The pr=o-oP of t h i s  equivalence resembles the 
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Eq. (52b) takes the fom 

So (117~) and (117d) are equivalent if 

[-4m m vt2 + (ml - m2l2 - 4m 2 2  v J 2 2  1 
5 1 2 1  

which is an identity. So working back, the equivalence of (117~) and 

(117d) implies the equivalence of (117a) and (117b) without subsidiary 

conditions 



Relatione Corresponding t a  Eqs. (48) - (52) when &E$O 

The pair of Eqs,  (48b), (48c) are invariant under the  in te r -  

change of v ,v' and of v v0 

working back one gets  only (105), fee., (106) is required. But 

with &E40 the argument (Eqs. (lC7) 1 shoving (106) followed *om 

(48d) no longer is valid. 

Thus (48d) continues t o  hold, but 1 1  2D 2" 

So (48d) must be supplemented by (106), 

Eqs (49b) (49c 1 form mother  invariant pair, 

Eq. (5Ob) becomes 

(1188) 

(118b ) 

(118c ) 

Ea. (118~) is equivalent t o  (118a), without any .mxilialgr conditions. 
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Eq. (52b) becomes 

implying 

which must be supplemented by 

These results, and the results of Eqs. (87) - ( 8 9 ) ,  axe 

summarized at the end of section De 
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Figure 1 Caption 

Integration region (rhaded) in the v,V plane for EQ. (28).  

Liner (a) ,  (b) ,  (c) are plot8 of 40. .  (31a). (31b). (31c) 

rerpec t im~y .  

at (I = vbc. The e l l lpre  (a) l a  a plot of E q .  (32), for the came 

that i t a  interrectionr with the boundarlcr of the rhaded region occur 

on l iner ( 8 ) .  (b), at v = va, v reepectively. 

limit8 of Integration la (33) are vL = v= and vu 

Liner ( a ) ,  (c )  interrect 8% v = vw; l iner (b), (c )  

In thlr  cioe,  the 0 

= 
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